Green Removal of Toxic Pb(II) from Water by a Novel and Recyclable Ag/γ-Fe2O3@r-GO Nanocomposite
Authors
Abstract:
Toxic leadions removed efficiently from water by a newly fabricated, magnetically recyclable, antibacterial nano-Ag/γ-Fe2O3@GOadsorbent, at ambient and teh physiological pH=7. Teh adsorption depends on teh adsorbent dosage, initial Pb(II)concentration, pH and teh contact time. Teh optimum removal efficiency of teh leadion is found to be 93.1% wif a dosage rate of 20 mg/L, in 40 minutes, at pH 5 (to 14). Equilibrium data fits well wif teh Langmuir and Freundlich models wif a maximum adsorption capacity of 90.91 mg/g of Pb(II) per 20 mg/L of Ag/γ-Fe2O3@GO. Teh removal/uptake mechanism involves interaction between Pb(II) and teh oxide/hydroxyl layer around Ag/γ-Fe2O3@rGO, in teh contaminated water medium.
similar resources
Removal of Toxic Cr(VI) Ions from Water Sample a Novel Magnetic Graphene Oxide Nanocomposite
This work describes the synthesis of a novel magnetic graphene oxide composite for removal of Cr(VI) ions. The synthesized nanosorbent were characterized with various techniques such as FT-IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis and vibrating sample magnetometry (VSM). This material is illustrated to represent a viable sorbent for the removal of Cr(VI...
full textGreen Removal of Toxic Th(IV) by Amino-Functionalized Mesoporous TiO2-SiO2 Nanocomposite
Mesoporous TiO2-SiO2 nanocomposite (TS) was synthesized via sol-gel method and Amino-functionalized using 3-(aminopropyl) triethoxysilane. prepared amino-functionalized TiO2-SiO2 (NH2TS) was evaluated for eliminating radioactive Th(IV) ion in comparison with (TS). The prepared nanocomposites were characterized using FT-IR, XRD, DSC-TGA...
full textDye removal from water by zinc ferrite-graphene oxide nanocomposite
In this work, zinc ferrite magnetic and zinc ferrite-graphene oxide nanocomposite were synthesized through a facile hydrothermal method and dye removal capability as an adsorbent were studied. Fourier transform infrared spectroscopy FT-IR, X-ray diffraction XRD and scanning electron microscopy SEM were used to characterize the synthesized nanocomposite. The UV-Vis results showed that the additi...
full textKinetics adsorption of Amoxicillin from aqueous solution by Graphen Oxide- Gold nanoparticles (GO-AuNPs) nanocomposite as novel adsorbent
In this research, Graphene Oxide- Gold nanoparticles (AuNP/GO) were easily fabricated by a redox reaction between GO and chloroauric acid without using any additional reductant and then used to stabilize Pickering emulsions. (AuNP/GO) was investigated by FT-IR spectroscopy. The changes of parameters such as contact time, pH, Amoxicillin initial concentration and temperature were tested and inve...
full textKinetics adsorption of Amoxicillin from aqueous solution by Graphen Oxide- Gold nanoparticles (GO-AuNPs) nanocomposite as novel adsorbent
In this research, Graphene Oxide- Gold nanoparticles (AuNP/GO) were easily fabricated by a redox reaction between GO and chloroauric acid without using any additional reductant and then used to stabilize Pickering emulsions. (AuNP/GO) was investigated by FT-IR spectroscopy. The changes of parameters such as contact time, pH, Amoxicillin initial concentration and temperature were tested and inve...
full textwuthering heights and the concept of marality/a sociological study of the novel
to discuss my point, i have collected quite a number of articles, anthologies, and books about "wuthering heights" applying various ideas and theories to this fantastic story. hence, i have come to believe that gadamer and jauss are rightful when they claim that "the individaul human mind is the center and origin of all meaning," 3 that reading literature is a reader-oriented activity, that it ...
15 صفحه اولMy Resources
Journal title
volume 37 issue 1
pages 29- 37
publication date 2018-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023